4y^2-9^2=36

Simple and best practice solution for 4y^2-9^2=36 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4y^2-9^2=36 equation:



4y^2-9^2=36
We move all terms to the left:
4y^2-9^2-(36)=0
determiningTheFunctionDomain 4y^2-36-9^2=0
We add all the numbers together, and all the variables
4y^2-117=0
a = 4; b = 0; c = -117;
Δ = b2-4ac
Δ = 02-4·4·(-117)
Δ = 1872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1872}=\sqrt{144*13}=\sqrt{144}*\sqrt{13}=12\sqrt{13}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{13}}{2*4}=\frac{0-12\sqrt{13}}{8} =-\frac{12\sqrt{13}}{8} =-\frac{3\sqrt{13}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{13}}{2*4}=\frac{0+12\sqrt{13}}{8} =\frac{12\sqrt{13}}{8} =\frac{3\sqrt{13}}{2} $

See similar equations:

| 9y+5=5+9y | | 26=2x+8 | | x+2/3=1/7 | | 5(x+4)-8=3x+2 | | -7+n/3=-10 | | 13=-54x+2)+21 | | 12x2+18x=x+5 | | 10=2x-0.0625x^2 | | 3x-60=36 | | 5(x+4-8=3x+2 | | -5(v+2)+2v+6=8v+9 | | -4(v+2)+2+6=8v+9 | | e*2e*5e=0 | | 2x-3+x+16=180 | | x/3+12=-3 | | n/8=-10 | | (x)(x-9)(x+3)=0 | | b-18=+24 | | 5a-27=23 | | 80.8=11x | | 3*4x+5-8x=0 | | 10b=10.48 | | 2/5x+1/10=11/2x+3/5 | | 1/4s+31/8=13 | | 3z/8-3=1 | | 2(x+3)+6=4x-2(-4+x) | | -3x+12+7x=2x-4x | | 3x+16=2x-4 | | 6x+5-4(x+1)=9x+3 | | 7/2+5/2x=2x-2 | | 1/2d-3=2/3d | | 4.9t^2-2t-6=0 |

Equations solver categories